
数分B3习题课讲义

3.5  ,  至多可数，则  至多可数

 无极限点，否则该点属于  ，矛盾。 
在  空间（有可数基），孤立点集至多可数，故  至多可数，进而  至多可数。

 

3.6  cannot be the disjoint union of countably many closed sets.

Lemma 1 :  is a closed set.  is a component of . Then 

Let . Suppose that  is disjoint from . Then there is an open-closed set 
 and . Then by the definition of subspace topology, , which is

open, such that . Since , we have . Thus  is
open in . But  is also closed in , and  closed in . So  is closed in , which implies 

. And it is impossible.

Lemma 2 : Closed interval ， 's are non-empty. Then for all , there is a closed
interval  satisfying 

, and  has at least two non-empty sets.

If  is empty then we take . Thus we can assume that ’s are not empty. Take . By
the property of (T4), there are disjoint open set  such that  and . Let 

 and  the component of  in the subspace .  is a closed interval and 
. By lemma 1, . Because , there is another  such that 

intersects with , thus it intersects with .

Let a closed interval , and each  is closed. For each , we can find a closed interval 
 which doesn't intersect with . So we get a decreasing closed set

sequence , thus . While  by the construction,
which is a contradiction.

Remarks :  

1. 注意区分闭集和闭区间
2. 开集可以写成可数个开区间的并，但闭区间不行

 

3.9  is not a  set, i.e.  cannot be the intersection of countably many open sets.

Suppose , where 's are open sets. Take a closed interval 
. Similarly we can find a closed interval 

. By the compactness, 
. Because  for each , . But  by the construction.

Remarks: 

1. Let . Is  equal to ? What can we
infer from this example?

2. There are "a lot of" points in  !
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Example : A topological space is called a Baire space if every intersection of a countable
collection of open dense sets is also dense.

Fact :  

1. Any complete metric space is a Baire space.
2. Any compact Hausdorff space is a Baire space
3. Any locally compact Hausdorff space is a Baire space

 

Example : Cantor set

Fact :  

1.  is closed.
2. Evrey point in the Cantor set is a limit point, i.e. .
3. 
4. We can define a map

It is not difficult to show that  is a homeomorphism between  and .
5. (Cantor Function) By the binary representation, we have a homeomorphism

Let . Since  is the union of disjoint countably many open
intervals , and , so we can connect  and 
with a horizontal line segment for each . Thus we get a monotonic function 

, which is called Cantor Function.

 

4.3 In , continuity is equivalent to sequence continuity.

" " :  is continuous. For any , and any neighborhood  of , 
 is a neighborhood of . Therefore . So 

.

" " : It suffices to prove that for any , . By the property of metric
space, for each  such that . Therefore , and 

. So .

Remarks :  

1. Without "metric",  maynot be the limit of a sequence of . For example, in 
, let  be any uncountable set. Then  since the intersection of 
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and every open set in  has uncountably many elements. But  if and only if 
.

2.  is sequence continuous but not continuous.

 

Example : upper semi-continuous topology  
We can define a topology on 

We say a function  is upper semi-continuous if 
 such that .

Fact : The following statements are equivalent: 

1.  is upper semi-continuous
2.  is continuous.
3. If , 

Similarly, we can define lower semi continuous and lower semi-continuous topology.

R x  →n x

∃N , ∀m,n > N , a  =m a  n

Id : (R, T  ) →cocountable (R, T  )discrete

R

T  =u.s.c {(−∞, a) : a ∈ R}

f : (X, T ) → R ∀x  ∈0 X, ∀ϵ >
0, ∃U ∈ N (x  )0 ∀x ∈ U , f(x) < f(x  ) +0 ϵ

f

f : (X, T ) → (R, T  )u.s.c

(X, T ) = (R, T  )usual  f(x) ≤limx→x  0 f(x  )0


