数分B3习题课讲义

3.5 $A \subset \mathbb{R}$, A' 至多可数,则 A 至多可数

 $A \setminus A'$ 无极限点,否则该点属于A',矛盾。 在C2空间(有可数基),孤立点集至多可数,故 $A \setminus A'$ 至多可数,进而A至多可数。

3.6 [0,1] cannot be the disjoint union of countably many closed sets.

Lemma 1 : $F \subset \mathbb{R}$ is a closed set. C is a component of F. Then $\partial F \cap C \neq \phi$

Let $x_0 \in C$. Suppose that C is disjoint from ∂F . Then there is an open-closed set $A \subset Int(F) \subset F$ and $x_0 \in A$. Then by the definition of subspace topology, $\exists U \subset \mathbb{R}$, which is open, such that $A = U \cap F$. Since $A \cap Int(F) = \phi$, we have $A = U \cap Int(F)$. Thus A is open in \mathbb{R} . But A is also closed in F, and F closed in \mathbb{R} . So A is closed in \mathbb{R} , which implies $A = \mathbb{R}$. And it is impossible.

Lemma 2 : Closed interval $F = \bigsqcup F_i$, F_i 's are non-empty. Then for all $i \neq j$, there is a closed interval $C \subset \mathbb{R}$ satisfying

 $C\cap F_i=\phi, C\cap F_j
eq \phi$, and $C\cap F_k, k=1,2,\cdots$ has at least two non-empty sets.

If F_i is empty then we take $C = \mathbb{R}$. Thus we can assume that F_i 's are not empty. Take $j \neq i$. By the property of (T4), there are disjoint open set U, V such that $F_i \subset U$ and $F_j \subset V$. Let $x \in$ F_j and C the component of x in the subspace $\overline{V} \subset U^C$. C is a closed interval and $C \cap F_i =$ $\phi, C \cap F_j \neq \phi$. By lemma 1, $C \cap \partial \overline{V} \neq \phi$. Because $F_j \subset V$, there is another k such that F_k intersects with $C \cap \partial \overline{V}$, thus it intersects with C.

Let a closed interval $F = \bigsqcup F_i$, and each F_i is closed. For each i, we can find a closed interval $C_i \subset C_{i-1}$ which doesn't intersect with $\bigsqcup_{k=1}^i (F_i \cap C_{i-1})$. So we get a decreasing closed set sequence $C_1 \supset C_2 \supset \cdots$, thus $\bigcap_{k=1}^{\infty} C_k \neq \phi$. While $\bigcap_{k=1}^{\infty} C_k \cap F = \phi$ by the construction, which is a contradiction.

Remarks :

- 1. 注意区分闭集和闭区间
- 2. 开集可以写成可数个开区间的并, 但闭区间不行

3.9 ${\Bbb Q}$ is not a G_δ set, i.e. ${\Bbb Q}$ cannot be the intersection of countably many open sets.

Suppose $\mathbb{Q} = \bigcap_{i=1}^{\infty} U_i = \{q_1, q_2, \cdots\}$, where U_i 's are open sets. Take a closed interval $[a_1 - \epsilon_1, a_1 + \epsilon_1] \subset U_1 \setminus \{q_1\}$. Similarly we can find a closed interval $[a_k - \epsilon_k, a_k + \epsilon_k] \subset (U_k \setminus \{q_k\}) \cap (a_{k-1} - \epsilon_{k-1}, a_{k-1} + \epsilon_{k-1})$. By the compactness, $V = \bigcap_{k=1}^{\infty} [a_k - \epsilon_k, a_k + \epsilon_k] \neq \phi$. Because $V \subset U_i$ for each $i, U \subset \mathbb{Q}$. But $q_k \notin V$ by the construction.

Remarks:

- 1. Let $U_m = \bigcup_{n=1}^{\infty} (q_n 1/2^{n+m}, q_n + 1/2^{n+m})$. Is $\bigcap_{m=1}^{\infty} U_m$ equal to \mathbb{Q} ? What can we infer from this example?
- 2. There are "a lot of" points in U_n^C !

Example : A topological space is called a **Baire space** if every intersection of a countable collection of open dense sets is also dense.

Fact :

- 1. Any complete metric space is a Baire space.
- 2. Any compact Hausdorff space is a Baire space
- 3. Any locally compact Hausdorff space is a Baire space

Example : Cantor set

$$C = [0,1] \setminus \cup_{n=1}^\infty \cup_{k=0}^{3^{n-1}-1} (rac{3k+1}{3^n},rac{3k+2}{3^n})$$

Fact :

- 1. C is closed.
- 2. Evrey point in the Cantor set is a limit point, i.e. C = C'.
- 3. $C = \{\sum_{k=1}^\infty rac{2a_k}{3^k}: a_k \in \{0,1\}\}$
- 4. We can define a map

$$g: \{0,1\}^{\mathbb{N}} o [0,1], (a_1,a_2,\cdots) \mapsto \sum_{k=1}^{\infty} rac{2a_k}{3^k}$$

It is not difficult to show that g is a homeomorphism between $\{0, 1\}^{\mathbb{N}}$ and C. 5. (Cantor Function) By the binary representation, we have a homeomorphism

$$h:\{0,1\}^{\mathbb{N}}
ightarrow [0,1],(a_1,a_2,\cdots)\mapsto \sum_{k=1}^{\infty}rac{a_k}{2^k}$$

Let $f = h \circ g^{-1} : C \to \mathbb{R}$. Since C^C is the union of disjoint countably many open intervals (a_i, b_i) , and $f(a_i) = f(b_i)$, so we can connect $(a_i, f(a_i))$ and $(b_i, f(b_i))$ with a horizontal line segment for each i. Thus we get a monotonic function f_C : $[0, 1] \to [0, 1]$, which is called Cantor Function.

4.3 In (X,
ho), continuity is equivalent to sequence continuity.

" \Rightarrow " : $f: X \to Y$ is continuous. For any $x_n \to x_0$, and any neighborhood V of $f(x_0)$, $f^{-1}(V)$ is a neighborhood of x_0 . Therefore $\exists N, \forall n > N, x_n \in f^{-1}(V) \Rightarrow f(x_n) \in V$. So $f(x_n) \to f(x_0)$.

" \Leftarrow " : It suffices to prove that for any $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$. By the property of metric **space**, for each $a \in \overline{A}, \exists a_n \in A$ such that $a_n \to a$. Therefore $f(a_n) \to f(a)$, and $f(a) \in \overline{f(A)}$. So $f(\overline{A}) \subset \overline{f(A)}$.

Remarks :

1. Without "metric", $x \in \overline{A}$ maynot be the limit of a sequence of $x_n \in A$. For example, in $(\mathbb{R}, \mathcal{T}_{cocountable})$, let A be any uncountable set. Then $\overline{A} = \mathbb{R}$ since the intersection of A

and every open set in ${\mathbb R}$ has uncountably many elements. But $x_n o x$ if and only if $\exists N, orall m, n > N, a_m = a_n.$ 2. $Id: (\mathbb{R}, \mathcal{T}_{cocountable}) \to (\mathbb{R}, \mathcal{T}_{discrete})$ is sequence continuous but not continuous.

Example : upper semi-continuous topology We can define a topology on ${\mathbb R}$

$$\mathcal{T}_{u.s.c} = \{(-\infty,a): a \in \mathbb{R}\}$$

 $\mathcal{T}_{u.s.c} = \{(-\infty,a): a \in \mathbb{R}\}$ We say a function $f: (X,\mathcal{T}) o \mathbb{R}$ is **upper semi-continuous** if $orall x_0 \in X, orall \epsilon > 0, \exists U \in \mathcal{N}(x_0)$ such that $orall x \in U, f(x) < f(x_0) + \epsilon$.

Fact : The following statements are equivalent:

1. f is upper semi-continuous 2. $f:(X,\mathcal{T})
ightarrow (\mathbb{R},\mathcal{T}_{u.s.c})$ is continuous. 3. If $(X,\mathcal{T})=(\mathbb{R},\mathcal{T}_{usual})$, $\overline{lim}_{x
ightarrow x_0}f(x)\leq f(x_0)$

Similarly, we can define lower semi continuous and lower semi-continuous topology.